186 research outputs found

    Persistence of phytoplankton responses to different Si:N ratios under mesozooplankton grazing pressure: a mesocosm study with Northeast Atlantic plankton

    Get PDF
    We fertilised 12 mesocosms with NE Atlantic phytoplankton with different Si:N ratios (0:1 to 1:1). After 1 wk, we added mesozooplankton, mainly calanoid copepods at natural densities to 10 of the mesocosms; the remaining 2 mesocosms served as controls. A trend of increasing diatom dominance with increasing Si:N ratios and species-specific correlations of diatoms to Si:N ratios were not changed by the addition of mesozooplankton. Large unicellular and chain-forming diatoms, thin-walled dinoflagellates (Gymnodiniales) and ciliates were reduced by copepod grazing while armoured dinoflagellates remained unaffected. Nanoplanktonic flagellates and diatoms profited from the addition of copepods, probably through release from ciliate grazing

    Integrated Atom Detector Based on Field Ionization near Carbon Nanotubes

    Full text link
    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10^9 V/m, which ionize ground state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10^(-10)s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.Comment: 7 pages, 8 figure

    Hidden in plain sight: The importance of cryptic interactions in marine plankton

    Get PDF
    Here, we present a range of interactions, which we term “cryptic interactions.” These are interactions that occur throughout the marine planktonic foodweb but are currently largely overlooked by established methods, which mean large‐scale data collection for these interactions is limited. Despite this, current evidence suggests some of these interactions may have perceptible impacts on foodweb dynamics and model results. Incorporation of cryptic interactions into models is especially important for those interactions involving the transport of nutrients or energy. Our aim is to highlight a range of cryptic interactions across the plankton foodweb, where they exist, and models that have taken steps to incorporate these interactions. Additionally, it is discussed where additional research and effort is required to continue advancing our understanding of these cryptic interactions. We call for more collaboration between ecologists and modelers in order to incorporate cryptic interactions into biogeochemical and foodweb models

    Calibration of a single atom detector for atomic micro chips

    Get PDF
    We experimentally investigate a scheme for detecting single atoms magnetically trapped on an atom chip. The detector is based on the photoionization of atoms and the subsequent detection of the generated ions. We describe the characterization of the ion detector with emphasis on its calibration via the correlation of ions with simultaneously generated electrons. A detection efficiency of 47.8% (+-2.6%) is measured, which is useful for single atom detection, and close to the limit allowing atom counting with sub-Poissonian uncertainty

    Grazing by mesozooplankton from Kiel Bight, Baltic Sea, on different sized algae and natural seston size fractions

    Get PDF
    Grazing experiments were conducted with natural mesozooplankton from Kiel Bight, Germany, using radioactive labelled phytoplankton cultures and seston size fractions. The results of experiments using phytoplankton cultures indicated that bivalve veligers performed highest clearance of particles within a size range of 4.7 to 6.3 ”m, whereas optimum particle size for copepods was 15 ”m. The results of experiments using labelled natural seston size fractions identified bivalve veligers and appendicularians as those responsible for the removal of particles within the smallest size class (<2 ”m). Seston size fractions larger than 5 ”m were mainly cleared by copepods and nauplii. As particle size increased, the contribution of copepod clearance to total zooplankton clearance within size classes increased from 57% (<5 ”m size class) to more than 81% (30 to 100 ”m size class). When the nauplii clearance rates were included, the total copepod clearance accounted for 90 to 97.6% of the total volume cleared of particles bigger than 10 ”m. Despite low abundances of bivalve veligers and appendicularians in Kiel Bight at the time of the experiment, we calculated that approximately 10 and 8.5%, respectively, of the carbon ingested by total mesozooplankton was due to veliger and appendicularian grazing. The importance of bivalve veligers might be seen in their grazing on seston particles that escape predation by copepods and on the amount of energy that is therefore directed from the water column to the benthos when larvae settle

    Exposure pathways matter: Aquatic phototrophic communities respond differently to agricultural run-off exposed via sediment or water

    Get PDF
    1. Small shallow ponds are widespread but understudied water bodies in agricultural landscapes. Agricultural run-off (ARO) transports pesticides and nutrients into adjacent aquatic ecosystems where they occur dissolved in the water column or are bound to sediments. Consequently, aquatic communities are affected by ARO via different exposure pathways. We hypothesize that sediment-bound ARO mainly affects submerged rooted macrophytes, while phytoplankton and periphyton are more prone to ARO in water. These primary producers compete for resources resulting in a regime shift between alternative stable states of macrophyte or phytoplankton dominance. We hypothesize that warming increases nutrient release from sediments and thereby facilitates the occurrence of phytoplankton dominance. 2. Using a full-factorial microcosm design, we exposed aquatic primary producers to either sediment or water application of a mixture of common pesticides (terbuthylazine, pirimicarb, tebuconazole and copper) and nitrate at two concentrations and two temperatures (22°C and 26°C) for 4 weeks. Initial and final concentrations of pesticides and nitrate, final biomass of macrophytes, periphyton and phytoplankton, pesticide accumulation in macrophytes and changes in carbon, nitrogen and phosphorus content and selected exoenzyme activities in the sediment were measured. 3. We found lower final macrophyte biomass for both ARO treatments compared to controls, indicating a prevalence of negative effects by herbicides and competition for light with other phototrophs. In contrast, phytoplankton and periphyton biomass increased, but only when exposed to ARO via the water column, indicating a prevalence of positive effects by nutrient supply. Microbial carbon and nutrient cycling in sediments was not affected by ARO. Higher temperature mitigated ARO-related effects on macrophytes under sediment exposure. 4. Synthesis and application. ARO poses a strong risk of submerged macrophyte loss and establishment of turbid conditions with phytoplankton dominance in aquatic ecosystems. In conclusion, exposure pathways as well as indirect and interacting effects of multiple stressors need to be considered when designing appropriate mitigation measures. Under climate change, we suggest to prioritize local measures as buffer strips a reduced use of pesticides and fertilizers, and sediment removal as appropriate measures to protect these vulnerable but widespread aquatic systems, which are highly relevant for biodiversity in agricultural landscapes

    Chaoborus and Gasterosteus Anti-Predator Responses in Daphnia pulex Are Mediated by Independent Cholinergic and Gabaergic Neuronal Signals

    Get PDF
    Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment of responses to variable predation regimes

    Colloquium: Quantum interference of clusters and molecules

    Full text link
    We review recent progress and future prospects of matter wave interferometry with complex organic molecules and inorganic clusters. Three variants of a near-field interference effect, based on diffraction by material nanostructures, at optical phase gratings, and at ionizing laser fields are considered. We discuss the theoretical concepts underlying these experiments and the experimental challenges. This includes optimizing interferometer designs as well as understanding the role of decoherence. The high sensitivity of matter wave interference experiments to external perturbations is demonstrated to be useful for accurately measuring internal properties of delocalized nanoparticles. We conclude by investigating the prospects for probing the quantum superposition principle in the limit of high particle mass and complexity.Comment: 19 pages, 13 figures; v2: corresponds to published versio

    Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia

    Get PDF
    Little is known about the genetic mechanisms underlying inducible defenses. Recently, the genome of Daphnia pulex, a model organism for defense studies, has been sequenced. Building on the genome information, recent preliminary studies in BMC Developmental Biology and BMC Molecular Biology have assessed gene response profiles in Daphnia under predation pressure. We review the significance of the findings and highlight future research perspectives
    • 

    corecore